

THN Solutions (Thiên Hải Ngọc manufacturing & trading company)
website: www.thnsolutions.com

Copyright notice

Copyright © 2004 - 2008 THN Solutions (Thiên Hải Ngọc manufacturing & trading company). All rights reserved.
Reproduction, adaptation, or translation of this document without prior written permission is prohibited.

Legal notice
The content of this guide is furnished for informational use only, is subject to change without notice, and should not be construed as a commitment by THN
Solutions. THN Solutions makes no warranty of any kind with regard to this document, including, but not limited to, the implied warranties of merchantability and
fitness for a particular purpose. THN Solutions shall not be held liable for errors contained herein or direct, indirect, special, incidental or consequential damages in
connection with the furnishing, performance, or use of this material.

By
Nguyễn, M. Hải - Chief architect

Updated 07/11/2008

FormSoul Technology:
Fast, Secure and Easy Form Building

White paper 2
 FormSoul:
 Fast, Secure and Easy Form Building

Page 3 Executive Summary

Page 4 Current State of Building Application UI

 Manual Coding
 Generated Codes
 Automatic binding
 Testing

Page 8 Using FormSoul

 Automatic Binding
 Decorative Validation
 Same Code, Different Paradigms
 Emitted form

Page 10 How It works?

Page 11 Case Study: Productivity for Numerous Applications

 FPT Software and Petronas project
 FormSoul as a framework component

Page 12 Final Thoughts

Page 13 References

Contents

White paper 3
 FormSoul:
 Fast, Secure and Easy Form Building

As demand for information technology increases, the development costs for
business software rises higher than ever due to rapidly increasing complexity and
diminishing productivity. Our FormSoul technology dramatically improves the
productivity in developing business application's user interface.

Even though software is assumed to deliver higher productivity for business, it is
the software development that is falling behind. According to a research study of
The Standish Group, on average only 16.2% of software projects are completed on-
time and on-budget, 31.1% of projects will be cancelled before they ever get
completed 2. Over the years, software development technology has grown by leaps
and bounds. The sheer volume of technologies available today is boggling to the
mind. Yesterday, a developer is expected to be proficient in C++, VB, Java, Delphi,
and a couple of databases. Today, the same developer finds himself struggling to
keep up with .Net, SOA, Ajax, Flex, SilverLight, and a lot more of acronyms soup. To
keep up with fast market changes, business asks for more complex software. To
keep up with complex requirements, technologies are invented. To keep up with
technologies, the developer, the human, is either required to learn or she will be
brutally replaced.

As the results of our many studies in productivity, we have realized it is the human
that is the most valuable asset and the most "optimizable" factor. The key is to have
the correct technologies and management to enable the strengths of human.
FormSoul is one of our technologies that are designed at improving the
productivity of programmers. A large chunk of development effort is wasted for
building, validating, and testing the user interface. FormSoul shrinks hundreds of
codelines down to several simple ones, freeing the developer from coding
repetitive, error-prone, vulnerable codes. Best of all, FormSoul architecture can
practically works with any user-interface (UI) paradigms.

In short, FormSoul lifts burdens from a developer's soul with:

• No more boring codes

• No more Get/Set/Validate UI

• No more boring tests

• Fast, secure codes

• Simple methodology for both Windows and Web applications

Executive Summary

"Technology has become the

limiting factor in executing a

business strategy. We need to find

new tools and techniques that

allow us to bring technology's

capabilities in line with business

demands" 1

White paper 4
 FormSoul:
 Fast, Secure and Easy Form Building

Unlike art designers who have the luxury of experimenting with colors and images,
a user-interface programmer spends most of his time on crafting and testing
repetitive codes .

Building a form (screen) typically includes the following tasks:

• Design : create and arrange UI controls

• Binding : retrieve data from UI controls or show existing data to UI controls

• Validate : check whether the data obtained are valid

• Tests : huge amount of testing effort is required to ensure that the form
works as intended and users should not be able to crash the application by
making mistakes on this form. This involves UI tests, automatic-tests,
monkey tests, security tests, etc.

In current state, programmers have several limited choices: manual coding, code
generation and auto-binding.

Manual Coding

This is the utmost painful solution to any programmer. Sadly, it is also the most
common solution selected because it allows the greatest flexibility.

Assuming we are developing a Product Details form like figure 1, let's see how this
simple form will be coded.

Example codes for Windows Application

Code 1.1: Retrieve data from input controls
 /// <summary>

 /// Gets input parameters from form

 /// </summary>

 Product GetInputs()

 {

 Product result = new Product();

 result.Name = txtName.Text;

 result.Price = nbPrice.ValueAsDecimal;

 result.OnHand = nbOnHand.ValueAsInt;

 result.SoldOut = chkSoldOut.Checked;

 result.LastPurchase = dtpLastPurchase.Date;

 result.ContactPerson = txtContactPerson.Text;

 return result;

 }

Current State of Building
Application User Interface

Figure 1: Sample screenshot of Product
Details form

White paper 5
 FormSoul:
 Fast, Secure and Easy Form Building

Code 1.2: Ensure the data obtained are valid
 bool Validate(Product p)

 {

 bool valid = true;

 //name must not be null, must be < 20 characters

 if ((p.Name != null) && (p.Name.Length < 20))

 valid &= true;

 else

 valid = false;

 //more validation codes

 return valid;

 }

Code 1.3: Show existing data to form
 /// <summary>

 /// Show a product to form

 /// </summary>

 void ShowInfo(Product p)

 {

 txtName.Text = p.Name;

 nbPrice.Value = p.Price;

 nbOnHand.Value = p.OnHand;

 chkSoldOut.Checked = p.SoldOut;

 dtpLastPurchase.Date = p.LastPurchase;

 txtContactPerson.Text = p.ContactPerson;

 }

Example codes for Web Application

Thanks to great engineering, the code used in web application nowadays is pretty
much similar to that in windows application. However, since web applications
experience much more security vulnerabilities, a typical GetInputs() method needs
to be "sanitized". Data must be normalized before any validation logic to deal with
attacks such as cross-site scripting attack, SQL injection attack, etc.

Code 1.4: Retrieve data from a web form
 /// <summary>

 /// Gets input parameters from form

 /// </summary>

 Product GetInputs()

 {

 Product result = new Product();

 result.Name =

 DataSanitizer.NormalizeString(txtName.Text);

 result.Price =

 DataSanitizer.NormalizeDecimal(nbPrice.ValueAsDecimal);

 result.OnHand =

 DataSanitizer.NormalizeInt(nbOnHand.ValueAsInteger);

 result.SoldOut =

 DataSanitizer.NormalizeBool(chkSoldOut.Checked);

 result.LastPurchase =

 DataSanitizer.NormalizeDateTime(dtpLastPurchase.SelectedDate);

 result.ContactPerson =

 DataSanitizer.NormalizeString(txtContactPerson.Text);

 return result;

 }

White paper 6
 FormSoul:
 Fast, Secure and Easy Form Building

The manual coding, like its name suggests, is manual, laborious, repetitive, and
error-prone. Even though it allows the greatest flexibility and freedom, the
programmer must repeat the same code for each and every input controls, form-
after-form.

Generated Codes

Since binding and validation codes are repetitive and similar, auto-generated codes
quickly reduce the time required for coding. Thus, a plethora of code generators
has flourished. Some popular generators are CodeSmith, IronSpeed Designer,
JavaGen, OpenXava, .netTiers 3.

Code Generator is a great tool. However, "the devil is in the details". Generator
always requires careful use and well-planned design.

Template is king
At the heart, code generators use various templates for generating codes. The
generated codes are as good as the templates. Be it data-tier or UI-tier, real-life
applications cannot be generated using plain-vanilla templates built-in in
generators. Someone must create the master template. That someone frequently is
some developer whereas this job should be the task of an architect. Only the
architect can thoroughly hand-craft a template that uses best-practices and
patterns, is flexible, scalable, and secured. Time changes, things change, practices
change. The once carefully crafted templates are obsolete. The already generated
codes become binary wastes.

Thou must not change
Generated codes generally includes special base classes that are not to be changed.
They should be considered as "work of art" because developers can only admire
that codes without touching them. Modifications become taboo, or at least will
break the established architecture that has been planned and built into the
templates.

Maintenance is a nightmare
For repetitive and similar codes, hundreds of man-hour can be saved by just a click
on button Generate. This one click is also the sure ticket to hell.

For a hypothetical project, an e-commerce website is generated. The project is
almost finished with everything from data, logic to UI and CSS. Suddenly, external
security audit reveals that all input forms are vulnerable to SQL injection attack. This
leads to review, retest, redo everything from data up to UI layer. The sad news,
generators cannot help you anymore. Good commercial generators may help revise
the original templates and re-generate new base codes. But be prepared for impact,
your codes may be lost, hidden bugs may creep up everywhere.

Five years down the road, things only get worse. The generator used becomes
obsolete. The original developers left the boat. The codes stay. No one understands
these codes anymore. The logics are buried under thousands of generated
codelines. To actually fix something, one must dig up the artifacts by reading these
cosmetic codes.

"The road to bad code is paved

with code generators"

- Assaf Arkin

White paper 7
 FormSoul:
 Fast, Secure and Easy Form Building

Automatic Binding

Almost all modern User-Interface kits include some forms of automatic binding.
The following is a sample data binding code used in WPF (one of the latest
presentation layers from Microsoft)
<DockPanel

 <DockPanel.Resources>

 <c:MyData x:Key="myDataSource"/>

 </DockPanel.Resources>

 <DockPanel.DataContext>

 <Binding Source="{StaticResource myDataSource}"/>

 </DockPanel.DataContext>

 <Button Background="{Binding Path=ColorName}"

 Width="150" Height="30">I am bound to be RED!</Button>

</DockPanel>

The problem of auto-binding is its superficial beauty. Many methodologies have
been invented for auto-binding, from simple and naive DataSource property to
complex xml-based ones. It is quite ironic that beginners are taught to use auto-
binding with UI controls, but seasoned programmers prefer hand coding.

The problem is easy: get property x from object o and show it to textbox y. The
solution, unfortunately, is not that simple. With each new auto-binding method,
programmers are required to re-learn how to do the same thing in a different way.
They also must understand the little limitations such as one-way binding versus
two-way binding, single versus multi-level of containment, etc.

Testing

Security tests and UI tests consume considerable amount of efforts. They are slow
and they can't be skipped. For each and every input on every form, at least one
testcase is required to ensure that users cannot accidentally crash or deliberately
hack the software, or simply to check that the form works as intended. The more
inputs there are on a form, the more effort is required for testing.

White paper 8
 FormSoul:
 Fast, Secure and Easy Form Building

FormSoul is a component designed for binding and validating existing forms with
minimal amount of coding and testing effort. Given the above example, FormSoul
helps achieve the same results with just a couple of codelines.

Automatic Binding

Code 2.1: Retrieve data from input controls
 FormSoul soul = new FormSoul(); //FormSoul component

 /// <summary>

 /// Gets input parameters from form

 /// </summary>

 Product GetInputs()

 {

 Product p = new Product();

 p = soul.Get(p) as Product;

 return result;

 }

Code 2.2: Show existing data to form
 /// <summary>

 /// Show a product to form

 /// </summary>

 void ShowInfo(Product p)

 {

 soul.Set(p);

 }

The above codes are not over-simplified for this example, they are exactly the
actual codes needed when using FormSoul. It doesn't matter how many properties
an object or how many fields a form has, binding data to a form and getting them
back require just a single line of Get, Set.

Decorative Validation

Looking back at Code 2.2, the line
 p = soul.Get(p) as Product;

will return a Product instance if all validations are passed. Otherwise, the FormSoul
will return a null object.

To specify the validation rules that need to be checked by FormSoul, we can
decorate rules directly on the Product class as followed:

Using FormSoul

White paper 9
 FormSoul:
 Fast, Secure and Easy Form Building

Code 2.3: Decorate validation rules
 public class Product

 {

 [Required]

 public string Name;

 [LessThan(1000)]

 [GreaterThan(0)]

 public int OnHand;

 ...

 }

The above codes specify that a Product is valid only when its Name is not null or

empty, and its OnHand must be between 0 and 1000.

For complex validation logics, the programmer can write custom validation rules

and register them to FormSoul easily.

Same code, different paradigms

Using FormSoul for Web Application
For web applications, nothing more is required. The above codes can be used for
both Windows Form and Web Form applications. This feature greatly reduces the
learning curve for any developer. For projects that require both Windows Form
client and Web UI, this is even better. Programmers only need to copy and paste
the same codes, nothing is changed, no configurations are needed.

Using FormSoul for Different UI Kits
The plain-vanilla UI controls shipped with .Net framework are usually not enough
for developing real-world applications. As such, developers frequently have to
work with third-party controls or write their own. New UI control library means new
learning curves, new codes to do old tasks. Furthermore, switching UI kits in the
middle of a development cycle usually brings along headache from changing and
testing codes. Using FormSoul saves developers from that problem. FormSoul
completely abstracts away the impedance mismatch between libraries. For any new
control, developers need to write a simple adapter class to register the class to
FormSoul. This is needed only once. The adapter class, on average, requires about
4-10 lines of code.

Emitted Form

For simple forms such as those found in web applications, FormSoul can be used to
directly build the form.by dropping a FormSoul component on a blank asp.net
page, then put the following code to the page's Load event:

Code 2.4: Auto-generate Asp.Net form
 protected void Page_Load(object sender, EventArgs e){

 {

 soul.ControlContainer = this;

 soul.Build(typeof(Product));

 }

FormSoul will automatically emit all the necessary input controls.

White paper 10
 FormSoul:
 Fast, Secure and Easy Form Building

FormSoul does it magic by knowing nothing about the actual controls it have to

work with. In architectural jargons, FormSoul is designed with the principle of

"separation of intent" in mind.

Assuming we are not bound to any programming language and free of any specific

UI control, how would we work with a paper-based application form?

Typically, a form filler (writer) will do the following tasks:

• Write data to form, item by item

• Double-check that the item are correctly filled

An application approver (form reader) will:

• Read data from form, item by item

• Ensure that data are valid

Now assuming we have the same application form, but printed on color paper, or

even imprinted on a sheet of metal, will we do differently to fill out the form? Of

course not, we still do the basic steps above. As human, our brain allows us to

quickly analyze and validate inputs. When it comes to programming, we are

clouded by codes and forced to do the same task in different ways.

As the results of many researches in productivity, FormSoul decomposes form

activities down to basic tasks and abstract away the differences of programming

languages, of different UI controls. For current version, FormSoul has this

architecture:

• Control Descriptor: describes how to work with a particular control

• Control Iterator: allows working with controls nested in control

• Schema Descriptor: describes how to work with a specific business object

• Form Binder: binds data between business object and UI form

• Form Builder: generates UI form, manages states of UI

• Object Validator: validates business object

Using this architecture, FormSoul is free from working with any specific UI control. It

simply concentrates on what it does best: reading, writing, and validating data.

How It Works?

Figure 2: Architecture of FormSoul

White paper 11
 FormSoul:
 Fast, Secure and Easy Form Building

FPT Software and Petronas project

Petronas 4 is an oil & gas corporation and is ranked among Fortune Global 500's

largest corporation in the world. In 2006, via its subsidiary iPerintis 5, Petronas

selected FPT Software 6 (one of the largest outsourcing IT corporations in Vietnam)

to develop a multi-million-dollar project.

The project was to convert roughly 1,300 applications from Lotus Notes to

Microsoft technologies. The user base was estimated at about 20,000 users

worldwide.

FormSoul as a framework component

Most applications in Petronas project were estimated to take about 3-7 man-month

to develop. Bigger ones were about 12-24 man-months. The problem with

developing so many applications was a methodology to consistently build high

quality products on-time. One of the core requirements was to develop a

framework that would be used for developing all applications to ensure high

quality and productivity.

THN was one of the consultants of this project and contributed to the core

framework architect panel. From our analysis, we came to the conclusion that UI

building and testing were one of the productivity bottle necks. As the results, we

suggested to apply FormSoul along with other technologies. These suggestions

helped reduce the development time from months down to weeks.

Case Study: Productivity
for Numerous Applications

White paper 12
 FormSoul:
 Fast, Secure and Easy Form Building

An application is successful only when users find it essential to their jobs. The costs
to build such application keeps rising due to increasingly more complex business
requirements, rapid change of technology, and due to the fact that human is slow
to learn and to change his mind set.

FormSoul is designed to embrace the productivity of developers while coding for
the presentation layer. Using FormSoul, developers are free from doing repetitive
tasks. Without the encumbrance of "wiring-codes", routine tests, and security
vulnerabilities, developers can enjoy again what human does best: to think.

Final Thoughts

White paper 13
 FormSoul:
 Fast, Secure and Easy Form Building

1 THE OPEN GROUP, Agent Technologies Discussion Paper, October 2006
 http://www.opengroup.org/

2 THE STANDISH GROUP REPORT, Chaos, 1995

3 CODE GENERATORS

 CodeSmith http://www.codesmithtools.com/
 IronSpeed Designer http://www.codesmithtools.com/
 JavaGen http://www.javagen.com/
 .netTiers http://www.nettiers.com/

4 PETRONAS CORPORATION

 http://www.petronas.com.my/

5 IPERINTIS
 http://www.iperintis.com/

6 FPT SOFTWARE
 http://www.fpt-soft.com/

References

